Show that there are infinitely many positive prime numbers.


Answer:


Step by Step Explanation:
  1. Let us assume that there are a finite number of positive prime numbers namely, p1, p2, p3 ..... pnp1, p2, p3 ..... pn, such that p1<p2<p3 ..... <pn.p1<p2<p3 ..... <pn.
  2. Let xx be any number such that,
    x=1+(p1×p2×p3×.....×pn)x=1+(p1×p2×p3×.....×pn)
    Observe that (p1×p2×p3×.....×pn)(p1×p2×p3×.....×pn) is divisible by each of p1, p2, p3 ..... pnp1, p2, p3 ..... pn but x=1+(p1×p2×p3×.....×pn)x=1+(p1×p2×p3×.....×pn) is not divisible by any of p1, p2, p3 ..... pnp1, p2, p3 ..... pn.
  3. Since xx is not divisible by any of the prime numbers p1, p2, p3 ..... pnp1, p2, p3 ..... pn, therefore, xx is either a prime number or has prime divisors other than p1, p2, p3 ..... pnp1, p2, p3 ..... pn.
    This contradicts our assumption that there are a finite number of positive prime numbers.
  4. Hence, there are infinitely many positive prime numbers.

You can reuse this answer
Creative Commons License
whatsapp logo
Chat with us