If cot θ+cosec θ=√2 cot θ,cot θ+cosec θ=√2 cot θ,cot θ+cosec θ=√2 cot θ, show that cot θ−cosec θ=√2 cosec θcot θ−cosec θ=√2 cosec θcot θ−cosec θ=√2 cosec θ
Answer:
- We have cot θ+cosec θ=√2 cot θcot θ+cosec θ=√2 cot θcot θ+cosec θ=√2 cot θ By squaring both the sides, we get [Math Processing Error]
- Hence, cot θ−cosec θ=√2 cosec θcot θ−cosec θ=√2 cosec θ.